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1. Introduction

This Progress Report covers the six month period from April 24 to October 22, 1991.

The completed work during this period is contained in the two papers listed in Section 4 and

summarized below. Work continues on frequency analysis for transfer function identification,

both with respect to the continued development of the underlying algorithms and in the

identification study of two physical systems. In addition, some new results of a theoretical

nature have recently been obtained that lend further insight into the frequency domain

interpretation of this research. Progress in each of these areas is summarized below.

Although not related to the system identification problem, some new results have been
obtained on the feedback stabilization of linear time lag systems.

2. List of Scientific Collaborators: April 24 to October 22, 1991:

A. V. Fullerton*

J. Q. Pan
A. A. Pandiscio

A. E. Pearson*

Y. Shen*

Graduate Student Research Assistant

Graduate Student Research Assistant

Raytheon Graduate Student Fellow

Professor and Principal Investigator

Graduate Student Research Assistant

*Received partial support under NAG- 1-1065.

3. Completed and Continuing Research

3.1. Parameter Identification for Exact Differential Systems

A paper has been written entitled "Explicit Least Squares System Parameter

Identification for Exact Differential Input/Output Models" which emphasizes the explicit

nature of the modulating function approach to parameter identification for systems that can be

modeled by an exact differential operator equation of the generic form:

/11 rl 2

E _-, gj (O)P.il_ (P)Ek (u ,y )=0 (1)
j --ok=1

where 0 denotes a vector of parameters, Pjk(P ) is a polynomial in the differential operator

p--d/dr, [u (t ),y (t )] in an input/output (i/o) data pair observed over some time interval [0,T],

and (gjJ_jk,Ek) are given functions of their arguments that depend on the specified model.
As listed in Section 4, this paper will appear in the Proceedings of the Eighth International

Conference on Mathematical and Computer Modelling) The algorithm described therein util-

izes the "real-valued" trigonometric modulating functions previously detailed in our earlier

progress reports. This is in contrast with some new insight recently obtained through the use

of the "complex-valued" modulating functions. For the purpose of describing this insight in

some detail, consider the following set of order n modulating functions defined on a time

interval [0,T]:

Three preprint copies of this paper were mailed to Dr. P. C. Murphy of the Aircraft Guidance

and Control Branch on September 13, 1991.
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where i='fZ1, m is any integer, COo=2_/T plays the role of a "resolving frequency", and n

corresponds to the order of the differential equation under investigation, e.g., the highest

degree of the polynomials Pjk (P) appearing in the model (1). 2

Noting from the binomial expansion that (_, (t) has the equivalent representation

t_n (t )=e -/m a._t _(_l)n--k n e-/ka.V (3)
k=O

it has been shown that the Modulation Property for this set of functions has the following

(new) characterization:

Let P(p) be a linear differential operator of order n and z(t) any sufficiently smooth

function defined on [0,T]. Then the integration of OOr_(t)P (p)z (t) over [0,T] satisfies

T

f,_ (t )P (19)z (t )dt =A n e (ira O_o)Z (m ) (4)
0

where Z(m) is the Fourier series coefficient for the mth harmonic of z(t), i.e.,

T

Z (m )=[.z (t )e-_ dt
0

and A" is the n th order finite difference operator, i.e., with Q (m)=P (ira mo)Z (m),

AQ (m)=Q (m +I)-Q (m)

A2Q (m)=Q (m +2)-2Q (m + 1)+Q (m)

AnQ(m)=_(-1)tC _]Q(n+m-k ).
k=O

Application of the above property to single input/output linear differential system models

leads to the block diagram in Fig. 1. This diagram indicates the flow of calculations that are

involved in setting up a standard least squares regression for estimating the parameters

0= col I-a l, • • -an ,b 1, " " bn ] in the regression model:

_lo(m)---T(m)O, m=0,1,2 • • (5)

where the row vector 7(m ) of regressors is defined by

_rn )---row[y_(m ), • • _nY(m),y_(m )," • ynU(m )] (6)

and the (77(m),yJ(m)) are defined in the diagram. The main difference between the least

2 The fact that each ¢,_(t) is an n th order modulating function on [0,T] stems from the property

that this function and its first n-1 derivatives vanish at both end points, i.e., pJ'_,(t)--O at t=0 and

t=T, k=0,1 - ' n-1.



squares estimation based on Eq. (5) and our previous formulation lies in the role of the fre-

quency index m. Thus, the Fourier series coefficient sequence pair [U (m),Y(m)], which can

be efficiently and accurately calculated by DFT/FFT techniques given the i/o data [u(t),y (t)]

on 0_t :gT", is appropriately displayed as the fundamental data-related quantity upon which the

Fourier modulating function technique is based. As shown in the diagram, the n th order finite

difference operators and the cascade of frequency modulators which operate on these quanti-

fies to produce the regressors _m) clearly show the tradeoff in going from the differential

equation model to the corresponding Fourier series frequency domain equation model. Previ-

ously, this "discrete" frequency domain interpretation was masked by the vector-matrix for-

mulation of the real-valued Fourier based modulating functions. Although this interpretation

does not change any of the results thus far obtained, in particular the one-shot least squares

estimation should be identical, it throws the sequential least squares estimation into the proper

light and may lead to new results in characterizing conditions for uniqueness of the estimate.

For example, the null space of the n th order finite difference operator is the space of all poly-

nomials Q (m) of degree n-l, and this fact immediately implies that the i/o data must contain

at least n frequencies else the regressors will not be linearly independent. Another possibility

is to model the residuals as a parametrized stochastic sequence, e.g., Poisson, in the discrete

frequency domain with an attempt to estimate the parameters for this process in addition to

the system parameters.

3.2. Parameter Identification for Inexact Differential Systems

Another interpretation resulting from the above Modulation Property is the least

squares formulation using the modulating functions (2)-(3) for the class of inexact differential

operator models defined generically by:

/l I n 2

__, _., gj (O)Fjk (u ,y )P yk (19)Ek (u ,y )=0. (7)
j--ok =l

The difference between this more general class of i/o models and the exact model (1) is the

allowance for a data dependent term F#(u (t),y (t)) multiplying the differential operator poly-

nomials Pjk (P). For example, a particle of mass m and displacement y (t), subject to a given

force u (t) and drag proportional to velocity squared, can be modeled by

my+010)2-02u =0.

Utilizing the differential identity: p2(y2)=2ypZy+2fpy)2, the preceding model can be rewritten

into the following equivalent vector-matrix equation which is of the form (7):

[m ,01,0 2] 2 00 1lap2 0 =0.

0 -1

Given the i/o data [u (t),y (t)] on [0,T] and the data-related signals wjk (t)=Fjk (u (t),y (t))

on [0,T], assume that each wjk(t) has the Fourier series representation:
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i _oo

wjk(t)= _ Wjk(1)e il_.
l =-..oo

It can be shown that application of the Modulation Property (4) to the model (7) leads

to the following explicitly defined function for least squares minimization:

Pl 1

J(o)= (Olgk(O)Rjk (8)
j.k--o

where the ]k th component of the real symmetric nonnegative definite matrix R is defined by

M

Rjk= Z _..,):(m_/2(m ) (9)
m=O

with specified nonnegative "frequency" weights _.,,,. Given the Fourier series coefficients

V k (m) of the data-related functions vk (t)---E k (u (t),y (t)) on [O,T ], i.e.,

T

Vk (m )=Ivk (t )e-imc_°t dt,
0

the regressors )j(m) are obtained by the following equations:

n2

%/j(rn )= ___Wjk (m )_yjk (m )
k=l

where

and

The convolution implied

coefficients as defined by

'Yjk (m)=A n Qjk (m)

Qjk (m )=P jk (im ¢oo)Vk (m ).

above is the linear convolution between Fourier series type

W (rn )_y(m )= ___ W (l)'[(m-l).

The flow of calculations involved in the above formulation is shown in Fig. 2 which

includes the flow of calculations for the more specialized exact model (1). Notice that the

least squares problem for the exact model does not entail any convolutions in the discrete fre-

quency domain. The presence of these convolutions in the case of inexact models is con-

sistent with the well-known general property of Fourier analyses in that multiplication in the

time domain entails convolution in the frequency domain, and vice versa. Here the frequency

domain is the discrete frequency domain of Fourier series coefficients, and the presence of

such convolutions imposes a smoothness condition on the "inexact" data-related signals

wjk(t) to the extent that only a finite number of the corresponding Fourier series coefficients

Wjk(l), 1=0,+1,+__2,.. +_L, can be calculated in practice. This L has to be less than the

number N of discrete-time samples of the i/o data, [u (jh)y (jh)], j =0,1 • • N, Nh =T, which

are used to calculate the Fourier series coefficients IVk (m),Wjk (m)] by DFT/FFT techniques.
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3.3. Comparison With Other Techniques

We are currently attempting to compare the Fourier modulating function technique to

other available methods in two problem areas: The identification of coefficients in a linear

differential system in which the available method is the Prediction Error Method in

MATLAB's Identification Toolbox by L. Ljung, and the high resolution frequency estimation

problem in which we have coded up the High Order Yule Walker algorithm for simulation

purposes. The results are thus far quite encouraging in favor of the Fourier modulating func-

tion technique. These results will be written up when completed.

Another area in which we have made some comparisons is the "frequency analysis prob-

lem" of estimating the transfer function G(ito) for a linear system given the i/o data

[u (t ),y (t )] over a sequence of time intervals [tj,tj+T], j=0,1,2 • • N, where the modulating

function technique facilitates estimation of G(io3) at selected knots co=ko_ 0, k--0,1 . • M, with

the resolving frequency co0 related to the lengths of the time intervals by ¢00=2n/T. The short

paper entitled "Frequency Analysis Via the Method of Moment Functionals" includes com-

parative data with the classical cross correlation method and the transfer function obtained by

the direct ratio of Fourier transforms of the i/o data. 3 Again, the results of these comparisons

are quite encouraging. A full length version of this paper will be prepared at some future

time. It may be that it will prove advantageous to incorporate the insight obtained by the

newly characterized Modulation Property described in Eq. (4) above.

3.4. Physical System Identification

Two physical system identification projects are underway and a third is planned for the

future. One project is the verification study of a fourth order Butterworth filter that was

designed and built by Yan Shen to low-pass filter the data in a wind tunnel setup at Brown

University, and another is the dynamic modeling of room acoustics (also being carried out by

Yan Shen) which is part of a microphone array project being carried out at Brown under the

direction of Prof. Harvey Silverman. These projects are helping "fine-tune" the algorithms

by focusing on the practical problems of order determination and computational considerations

for high order system models. The first of these is nearing completion and will be submitted

in report form in the not-too-distant future.

The third project will focus on modeling for the F-18 aircraft based on data forwarded to

us by E. A. Morelli. We shall start this project after we have completed the Butterworth filter

verification study.

4. Publications and Presentations

Pearson, A. E., "Explicit Least Squares System Parameter Identification for Exact Differential

Input/Output Models." Regular Paper to appear in the Proceedings of the Eighth ICMCM,

Univ. of Maryland, College Park, MD, April 1991.

Pearson, A. E. and J. Q. Pan, "Frequency Analysis Via the Method of Moment Functionals."

3 Three preprint copies of this paper were also mailed to P: C. Murphy on September 13, 1991.
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ShortPaperto appearin the Proceedingsof the 30 th IEEE CDC, Brighton, UK, Dec. 1991.

October 3 Presentation at the University Grantees Workshop, NASA Langley Research

Center, Aircraft Guidance and Control Branch.

October 21 Seminar Presentation "Parameter Identification for Differential System Models

Via Fourier Modulating Functions" at Northwestern University, Dept. of Electrical Engineer-

ing and Computer Science, Evanston, IL.

October 22 Seminar Presentation "Modeling and Parameter Identification for Differential Sys-

tems" at the University of Illinois, Dept. of Mechanical Engineering, Urbana-Champaign, IL.
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SISO MODEL:

p"y(t) + _:ajp'_Jy(t) - :_bj p'_Ju(t) = 0

T _,,j-1 j.1

'_m"(t) [ above ] = &"(imO)o)_Y(m) + _..ajA"(imO)o)'JY(m)

o t "' t .
n

= 7o(m) + _laj 7jY(m)

I1

_bj A"(im(%)'JU(m)

- t
n

_bj )'jU(m)

u(t)

AnI---- l /m,IAnI

y(t) _

7,_,_ _n I I ir[ pmc°° H ]-I I

imm4 ]_I_ I =I An I-_.._)

I n-J"m=°'4n I An_m)

I I "1

• _ !1 •

Fig. 1 Linear System Identification
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Fig. 2 Nonlinear System Identification


